Real-time frequency transfer system over ground-to-satellite link based on carrier-phase compensation at 10−16 level*

Author:

Liang Hui-Jian,Wang Shi-Guang,Bai Yu,Sun Si-Chen,Wang Li-Jun

Abstract

We demonstrate a novel and stable frequency transfer scheme over ground-to-satellite link based on real-time carrier-phase detection and compensation. We performed a zero-baseline measurement with the designed system, an uninterrupted frequency standard signal is recovered in the reception station without additional post-correction of delay error caused in the route, which is because the phase error of the entire route is tracked and compensated continuously in real-time. To achieve this goal, we employed two carriers in the system and the differential signal is transferred in order to eliminate the instability results from the local oscillator at the satellite transponder as well as the common-mode noise induced in the transfer route and microwave components. The stability of 3 × 10−16 with an integration time of 1 day was achieved and the time fluctuation during one day was measured to be about ±20 ps. Error sources and possible solutions are discussed. Our zero-baseline method shows a promising result for real-time satellite-based time and frequency transfer and deserves further research to find whether it works between long-baseline stations.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3