Structural and Mass Transport Properties of Liquid Ytterbium in the Temperature Range 1123–1473 K

Author:

Satikunvar D. D.,Bhatt N. K.,Thakore B. Y.

Abstract

Abstract We have studied structural and atomic transport properties for liquid f-shell ytterbium in a temperature range 1123–1473 K. Pair interactions among atoms are derived using a local pseudopotential. The potential parameters are fitted to the phonon dispersion curve at room temperature. The local pseudopotential used in the present study is computationally more efficient with only three parameters, and it is found to be transferable to the liquid phase without changing the parameters. Since computed various properties agree with reported theoretical and experimental findings; the adopted fitting scheme is justified. As a significant outcome of the study, we find that (i) the melting in Yb is governed by the Lindemann’s law, (ii) the mass transport mechanism obeys the Arrhenius law, (iii) the role of three particle correlation function for deriving the velocity autocorrelation function is little, (iv) the mean-square atomic displacement is more sensitive to the choice of interaction potential than the other bulk properties, and (v) the liquid Yb does not show liquid-liquid phase transition within the studied temperature range. Further, due to a good description of the structural and mass transport properties, we propose that Yb remains divalent at reduced density.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3