Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe

Author:

Luo 罗 Chao-Bo 朝波,Liu 刘 Wen-Chao 文超,Peng 彭 Xiang-Yang 向阳

Abstract

As opposed to the prototypical MoS2 with centroasymmetry, Janus ferrovalley materials such as H-VSSe are less symmetric with the mirror symmetry and time reversal symmetry broken, and hence possess spontaneous valley polarization and strong ferroelasticity. The optical transition is an important means to excite the valley carriers. We investigate the optical spectrum of H-VSSe by using the many-body perturbation-based GW approach and solving the Bethe–Salpeter equation (BSE) to include the electron–hole interactions. It is found that after the GW correction, the band gaps of the quasiparticle bands are much larger than those obtained by the normal density functional theory. The system is ferromagnetic and the valley gaps become non-degenerate due to spin–orbit coupling (SOC). The position of the lowest BSE peak is much lower than the quasiparticle band gap, indicating that the excitonic effect is large. The peak is split into two peaks by the SOC. The binding energy difference between these two BSE peaks is about the same as the difference between the inequivalent valley gaps. Our results show that in Janus H-VSSe the two lowest exciton peaks are from the two inequivalent valleys with different gaps, in contrast to the A and B exciton peaks of MoS2 which are from the same valley.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3