Rapid stabilization of stochastic quantum systems in a unified framework

Author:

Wen Jie,Wang Fangmin,Shi Yuanhao,Jia Jianfang,Zeng Jianchao

Abstract

Rapid stabilization of general stochastic quantum systems is investigated based on the rapid stability of stochastic differential equations. We introduce a Lyapunov–LaSalle-like theorem for a class of nonlinear stochastic systems first, based on which a unified framework of rapidly stabilizing stochastic quantum systems is proposed. According to the proposed unified framework, we design the switching state feedback controls to achieve the rapid stabilization of single-qubit systems, two-qubit systems, and N-qubit systems. From the unified framework, the state space is divided into two state subspaces, and the target state is located in one state subspace, while the other system equilibria are located in the other state subspace. Under the designed state feedback controls, the system state can only transit through the boundary between the two state subspaces no more than two times, and the target state is globally asymptotically stable in probability. In particular, the system state can converge exponentially in (all or part of) the state subspace where the target state is located. Moreover, the effectiveness and rapidity of the designed state feedback controls are shown in numerical simulations by stabilizing GHZ states for a three-qubit system.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3