Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water

Author:

Gao Fei,Xu Fang-Hua,Li Zheng-Lin

Abstract

Mesoscale eddies have a remarkable influence on the underwater sound field. Many previous studies have investigated the effects of eddies on transmission loss, the convergence zone, time delay, etc. However, the effects of eddies on spatial coherence are less well studied and remain unclear. In this paper, the effects of eddies on spatial coherence at the subsurface in deep water are investigated. The eddy environments are simulated with Gaussian eddy equations, the complex pressure field is obtained using a range-dependent parabolic equation model and the associated mechanism is analyzed based on ray theory and models. The results show that cold/warm mesoscale eddies affect spatial coherence in a high-intensity zone by changing the locations and width of the convergence zone. In the shadow zone, the horizontal correlation radius and the vertical correlation radius increase with range and decrease with depth, and they are increased by warm eddies and decreased by cold eddies, mainly caused by variation of the multipath structure.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3