Excess-iron driven spin glass phase in Fe1 + y Te1 – x Se x *

Author:

Tian Long,Liu Panpan,Hong Tao,Seydel Tilo,Lu Xingye,Luo Huiqian,Li Shiliang,Dai Pengcheng

Abstract

The iron-chalcogenide superconductor FeTe1–x Se x displays a variety of exotic features distinct from iron pnictides. Although much effort has been devoted to understanding the interplay between magnetism and superconductivity near x = 0.5, the existence of a spin glass phase with short-range magnetic order in the doping range (x ∼ 0.1–0.3) has rarely been studied. Here, we use DC/AC magnetization and (quasi) elastic neutron scattering to confirm the spin-glass nature of the short-range magnetic order in a Fe1.07Te0.8Se0.2 sample. The AC-frequency dependent spin-freezing temperature T f generates a frequency sensitivity ΔT f(ω)/[T f(ω)Δlog10 ω] ≈ 0.028 and the description of the critical slowing down with τ = τ 0(T f/T SG – 1)z v gives T SG ≈ 22 K and zv ≈ 10, comparable to that of a classical spin-glass system. We have also extended the frequency-dependent T f to the smaller time scale using energy-resolution-dependent neutron diffraction measurements, in which the T N of the short-range magnetic order increases systematically with increasing energy resolution. By removing the excess iron through annealing in oxygen, the spin-freezing behavior disappears, and bulk superconductivity is realized. Thus, the excess Fe is the driving force for the formation of the spin-glass phase detrimental to bulk superconductivity.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3