Author:
Zhang Xiao-Di,Han Wei-Hua,Liu Wen,Zhao Xiao-Song,Guo Yang-Yan,Yang Chong,Chen Jun-Dong,Yang Fu-Hua
Abstract
We investigated single-electron tunneling through single and coupling dopant-induced quantum dots (QDs) in silicon junctionless nanowire transistor (JNT) by varying temperatures and bias voltages. We observed that two possible charge states of the isolated QD confined in the axis of the initial narrowest channel are successively occupied as the temperature increases above 30 K. The resonance states of the double single-electron peaks emerge below the Hubbard band, at which several subpeaks are clearly observed respectively in the double oscillated current peaks due to the coupling of the QDs in the atomic scale channel. The electric field of bias voltage between the source and the drain could remarkably enhance the tunneling possibility of the single-electron current and the coupling strength of several dopant atoms. This finding demonstrates that silicon JNTs are the promising potential candidates to realize the single dopant atom transistors operating at room temperature.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献