Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process*

Author:

Wei Li,Meng Wei-Dong,Sun Li-Cun,Cao Xin-Fei,Pu Xiao-Yun

Abstract

Ray tracing method is used to study the propagation of collimated beams in a liquid–core cylindrical lens (LCL), which has dual functions of diffusion cell and image formation. The diffusion images on the focal plane of the used LCL are simulated by establishing and solving both linear and nonlinear ray equations, the calculated results indicate that the complex imaging results of LCL in inhomogeneous media can be treated by the law of ray propagation in homogeneous media under the condition of small refractive index gradient of diffusion solution. Guided by the calculation conditions, the diffusion process of triethylene glycol aqueous solution is experimentally studied at room temperature by using the LCL in this paper. The spatial and temporal concentration profile C e(z, t) of diffusion solution is obtained by analyzing diffusion image appearing on the focal plane of the LCL; Then, the concentration-dependent diffusion coefficient is assumed to be a polynomial D(C) = D 0 × (1 + α 1 C + α 2 C 2 + α 3 C 3 + ⋅). The finite difference method is used to solve the Fick diffusion equation for calculating numerically the concentration profiles Cn (z, t). The D(C)of triethylene glycol aqueous solution is obtained by comparing the Cn (z, t) with C e(z,t). Finally, the obtained polynomial D(C) is used to calculate the refractive index profiles nn (z,t)s of diffusion solution in the used LCL. Based on the ray propagation law in inhomogeneous media and the calculated n(z,t), the ray tracing method is used again to simulate the dynamic images of the whole experimental diffusion process to varify the correctness of the calculated D(C). The method presented in this work opens up a new way for both measuring and verifying the concentration-dependent liquid diffusion coefficients.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3