Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure*

Author:

Cao Zheng,Fu Qing-Qiao,Gu Hui,Tian Zhen,Yaer Xinba,Xing Juan-Juan,Miao Lei,Wang Xiao-Huan,Liu Hui-Min,Wang Jun

Abstract

Strontium titanate (SrTiO3) is a thermoelectric material with large Seebeck coefficient that has potential applications in high-temperature power generators. To simultaneously achieve a low thermal conductivity and high electrical conductivity, polycrystalline SrTiO3 with a multi-scale architecture was designed by the co-doping with lanthanum, cerium, and niobium. High-quality nano-powders were synthesized via a hydrothermal method. Nano-inclusions and a nano/micro-sized second phase precipitated during sintering to form mosaic crystal-like and epitaxial-like structures, which decreased the thermal conductivity. Substituting trivalent Ce and/or La with divalent Sr and substituting pentavalent Nb with tetravalent Ti enhanced the electrical conductivity without decreasing the Seebeck coefficient. By optimizing the dopant type and ratio, a low thermal conductivity of 2.77 W⋅m−1⋅K−1 and high PF of 1.1 mW⋅m−1⋅K−2 at 1000 K were obtained in the sample co-doped with 5-mol% La, 5-mol% Ce, and 5-mol% Nb, which induced a large ZT of 0.38 at 1000 K.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3