Author:
Wei Dong,Li Yi,Feng Zhen,Guo Gaofu,Ma Yaqiang,Yu Heng,Luo Qingqing,Tang Yanan,Dai Xianqi
Abstract
The construction of van der Waals (vdW) heterostructures by stacking different two-dimensional layered materials have been recognised as an effective strategy to obtain the desired properties. The 3N-doped graphdiyne (N-GY) has been successfully synthesized in the laboratory. It could be assembled into a supercapacitor and can be used for tensile energy storage. However, the flat band and wide forbidden bands could hinder its application of N-GY layer in optoelectronic and nanoelectronic devices. In order to extend the application of N-GY layer in electronic devices, MoS2 was selected to construct an N-GY/MoS2 heterostructure due to its good electronic and optical properties. The N-GY/MoS2 heterostructure has an optical absorption range from the visible to ultraviolet with a absorption coefficient of 105 cm−1. The N-GY/MoS2 heterostructure exhibits a type-II band alignment allows the electron-hole to be located on N-GY and MoS2 respectively, which can further reduce the electron-hole complexation to increase exciton lifetime. The power conversion efficiency of N-GY/MoS2 heterostructure is up to 17.77%, indicating it is a promising candidate material for solar cells. In addition, the external electric field and biaxial strain could effectively tune the electronic structure. Our results provide a theoretical support for the design and application of N-GY/MoS2 vdW heterostructures in semiconductor sensors and photovoltaic devices.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献