Author:
Zhao Shuyan,Song Yuxin,Liang Hao,Jin Tingting,Lin Jiajie,Yue Li,You Tiangui,Wang Chang,Ou Xin,Wang Shumin
Abstract
Strain and stress were simulated using finite element method (FEM) for three III–V-on-Insulator (III–VOI) structures, i.e., InP/SiO2/Si, InP/Al2O3/SiO2/Si, and GaAs/Al2O3/SiO2/Si, fabricated by ion-slicing as the substrates for optoelectronic devices on Si. The thermal strain/stress imposes no risk for optoelectronic structures grown on InPOI at a normal growth temperature using molecular beam epitaxy. Structures grown on GaAsOI are more dangerous than those on InPOI due to a limited critical thickness. The intermedia Al2O3 layer was intended to increase the adherence while it brings in the largest risk. The simulated results reveal thermal stress on Al2O3 over 1 GPa, which is much higher than its critical stress for interfacial fracture. InPOI without an Al2O3 layer is more suitable as the substrate for optoelectronic integration on Si.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献