Novel Si/SiC heterojunction lateral double-diffused metal–oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit*

Author:

Duan Baoxing,Huang Xin,Song Haitao,Wang Yandong,Yang Yintang

Abstract

A novel silicon carbide (SiC) on silicon (Si) heterojunction lateral double-diffused metal–oxide semiconductor field-effect transistor with p-type buried layer (PBL Si/SiC LDMOS) is proposed in this paper for the first time. The heterojunction has breakdown point transfer (BPT) characteristics, and the BPT terminal technology is used to increase the breakdown voltage (BV) of Si/SiC LDMOS with the deep drain region. In order to further optimize the surface lateral electric field distribution of Si/SiC LDMOS with the deep drain region, the p-type buried layer is introduced in PBL Si/SiC LDMOS. The vertical electric field is optimized by Si/SiC heterojunction and the surface lateral electric field is optimized by the p-type buried layer, which greatly improves the BV of device and alleviates the relationship between BV and specific on-resistance (R on,sp). Through TCAD simulation, when the drift region length is 20 μm, the BV is significantly improved from 249 V for the conventional Si LDMOS to 440 V for PBL Si/SiC LDMOS, increased by 77%; And the BV is improved from 384 V for Si/SiC LDMOS with the deep drain region to 440 V for the proposed structure, increased by 15%. The figure-of-merit (FOM) of the Si/SiC LDMOS with the deep drain region and PBL Si/SiC LDMOS are 4.26 MW/cm2 and 6.37 MW/cm2, respectively. For the PBL Si/SiC LDMOS with the drift length of 20 μm, the maximum FOM is 6.86 MW/cm2. The PBL Si/SiC LDMOS breaks conventional silicon limit.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3