Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis

Author:

Lahlou Y.,Maroufi B.,Daoud M.

Abstract

Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation. Essentially, for quantum systems prepared in pure states, it is difficult to differentiate between quantum entanglement and quantum correlation. Nonetheless, this indistinguishability is no longer holds for mixed states. To contribute to a better understanding of this differentiation, we have explored a simple model for both generating and measuring these quantum correlations. Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities, coupled through the photon hopping process. this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes. The key ingredient in analyzing quantum correlation in this system is the global covariance matrix. It forms the basis for computing two essential metrics: the logarithmic negativity ( E N m ) and the Gaussian interferometric power ( P G m ). These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations, respectively. Our study reveals that the Gaussian interferometric power ( P G m ) proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system, particularly in scenarios featuring resilient photon hopping.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3