Dynamic responses of an energy harvesting system based on piezoelectric and electromagnetic mechanisms under colored noise

Author:

Yang Yong-Ge,Meng Yun,Zeng Yuan-Hui,Sun Ya-Hui

Abstract

Because of the increasing demand for electrical energy, vibration energy harvesters (VEHs) that convert vibratory energy into electrical energy are a promising technology. In order to improve the efficiency of harvesting energy from environmental vibration, here we investigate a hybrid VEH. Unlike previous studies, this article analyzes the stochastic responses of the hybrid piezoelectric and electromagnetic energy harvesting system with viscoelastic material under narrow-band (colored) noise. Firstly, a mass-spring-damping system model coupled with piezoelectric and electromagnetic circuits under fundamental acceleration excitation is established, and analytical solutions to the dimensionless equations are derived. Then, the formula of the amplitude-frequency responses in the deterministic case and the first-order and second-order steady-state moments of the amplitude in the stochastic case are obtained by using the multi-scales method. The amplitude-frequency analytical solutions are in good agreement with the numerical solutions obtained by the Monte Carlo method. Furthermore, the stochastic bifurcation diagram is plotted for the first-order steady-state moment of the amplitude with respect to the detuning frequency and viscoelastic parameter. Eventually, the influence of system parameters on mean-square electric voltage, mean-square electric current and mean output power is discussed. Results show that the electromechanical coupling coefficients, random excitation and viscoelastic parameter have a positive effect on the output power of the system.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3