Pedestrian lane formation with following–overtaking model and measurement of system order

Author:

Li 李 Bi-Lu 碧璐,Li 李 Zheng 政,Zhou 周 Rui 睿,Shen 申 Shi-Fei 世飞

Abstract

Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design. Lane formation, a typical self-organizing phenomenon, helps pedestrian system to become more orderly, the majority of following behavior model and overtaking behavior model are imprecise and unrealistic compared with pedestrian movement in the real world. In this study, a pedestrian dynamic model considering detailed modelling of the following behavior and overtaking behavior is constructed, and a method of measuring the lane formation and pedestrian system order based on information entropy is proposed. Simulation and analysis demonstrate that the following and avoidance behaviors are important factors of lane formation. A high tendency of following results in good lane formation. Both non-selective following behavior and aggressive overtaking behavior cause the system order to decrease. The most orderly following strategy for a pedestrian is to overtake the former pedestrian whose speed is lower than approximately 70% of his own. The influence of the obstacle layout on pedestrian lane and egress efficiency is also studied with this model. The presence of a small obstacle does not obstruct the walking of pedestrians; in contrast, it may help to improve the egress efficiency by guiding the pedestrian flow and mitigating the reduction of pedestrian system orderliness.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3