Author:
Zhu Xin-Miao,Cui Min,Wang Yu,Yu Tian-Jing,Deng Jin-Xiang,Gao Hong-Li
Abstract
Abstract
Based on the transport equation of the semiconductor device model for 0.524 eV GeSn alloy and the experimental parameters of the material, thermal-electricity conversion performance governed by GeSn diode has been systematically studied in its normal and inverted structure. For the normal p+/n (n+/p) structure, it is demonstrated here that an optimal base doping N
d(a)
= 3 (7)×1018 cm-3 is observed, and the superior p+/n structure can reach the higher performance. To reduce material consumption, an economical active layer can be comprised of 100-300 nm emitter and 3-6 μm base to attain comparable performance as that for the optimal configuration. The results can offer many useful guidelines for the fabrication of economical GeSn thermophotovoltaic devices.
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献