A compact dual-band radiation system*

Author:

Yu Yuan-Qiang,Fan Yu-Wei,Wang Xiao-Yu

Abstract

Complex magnetically insulated transmission line oscillator (MILO), as an important development direction, can enhance the power efficiency and generate dual-band high power microwaves (HPMs). A complex MILO and a preliminary dual-band radiation system have been proposed in our previous studies. However, the axial length of the dual-band radiation system is too long to meet the compact requirements. In this paper, a compact dual-band radiation system is presented and investigated numerically. The compact dual-band radiation system comprises a dual-band cross-shaped mode converter and a dual-band coaxial conical horn antenna. It can convert two coaxial TEM mode microwaves (1.717 GHz and 4.167 GHz) generated by the complex MILO into the coaxial TE11 mode microwaves, and then radiate them into the air. At 1.717 GHz, the gain of the antenna is 17.9 dB, and the total return loss and diffraction loss are 1.50% and 0, respectively. At 4.167 GHz, the gain is 19.4 dB, and the total return loss and diffraction loss are 1.17% and 0.78%, respectively. The power handling capacity of the antenna is 5.1 GW at 1.717 GHz and 2.0 GW at 4.167 GHz. Comparing with the original structure, the length of the dual-band radiation system is reduced by 45.2%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3