Author:
Hou Yan-Yan,Li Jian,Chen Xiu-Bo,Ye Chong-Qiang
Abstract
Label propagation is an essential semi-supervised learning method based on graphs, which has a broad spectrum of applications in pattern recognition and data mining. This paper proposes a quantum semi-supervised classifier based on label propagation. Considering the difficulty of graph construction, we develop a variational quantum label propagation (VQLP) method. In this method, a locally parameterized quantum circuit is created to reduce the parameters required in the optimization. Furthermore, we design a quantum semi-supervised binary classifier based on hybrid Bell and Z bases measurement, which has a shallower circuit depth and is more suitable for implementation on near-term quantum devices. We demonstrate the performance of the quantum semi-supervised classifier on the Iris data set, and the simulation results show that the quantum semi-supervised classifier has higher classification accuracy than the swap test classifier. This work opens a new path to quantum machine learning based on graphs.
Subject
General Physics and Astronomy