Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene

Author:

Lu Tian,Liu Zeyu,Chen Qinxue

Abstract

Cyclocarbon fully consists of sp-hybridized carbon atoms, which shows quite unusual electronic and geometric structures compared to common molecules. In this work, we systematically studied strain energy (SE) of cyclocarbons of different sizes using regression analysis method based on electronic energies evaluated at the very accurate DLPNO-CCSD(T)/cc-pVTZ theoretical level. In addition, ring strain of two systems closely related to cyclocarbon, boron nitride (BN) ring, and cyclic polyacetylene (c-PA), is also explored. Very ideal relationships between SE and number of repeat units (n) are built for cyclo[2n]carbon, B n N n , and [2n]c-PA as SE = 555.0 ⋅ n −1, 145.1⋅ n −1, and 629.8⋅ n −1 kcal⋅mol−1, respectively, and the underlying reasons of the difference and similarity in their SEs are discussed from electronic structure perspective. In addition, force constant of harmonic potential of C–C–C angles in cyclocarbon is derived based on SE values, the result is found to be 56.23 kcal⋅mol−1⋅rad−2. The possibility of constructing homodesmotic reactions to calculate SEs of cyclocarbons is also explored in this work, although this method is far less rigorous than the regression analysis method, its result is qualitatively correct and has the advantage of much lower computational cost. In addition, comparisons show that ωB97XD/def2-TZVP is a good inexpensive alternative to the DLPNO-CCSD(T)/cc-pVTZ for evaluating energies used in deriving SE, while the popular and very cheap B3LYP/6-31G(d) level should be used with caution for systems with global electron conjugation such as c-PA.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3