Estimation of biophysical properties of cell exposed to electric field

Author:

Zhang Hui,Wang Liyang,Zhang Peijie,Zhang Xiaodi,Ma Jun

Abstract

Excitable media, such as cells, can be polarized and magnetized in the presence of an external electromagnetic field. In fact, distinct geometric deformation can be induced by the external electromagnetic field, and also the capacitance of the membrane of cell can be changed to pump the field energy. Furthermore, the distribution of ion concentration inside and outside the cell can also be greatly adjusted. Based on the theory of bio-electromagnetism, the distribution of field energy and intracellular and extracellular ion concentrations in a single shell cell can be estimated in the case with or without external electric field. Also, the dependence of shape of cell on the applied electronic field is calculated. From the viewpoint of physics, the involvement of external electric field will change the gradient distribution of field energy blocked by the membrane. And the intracellular and extracellular ion concentration show a certain difference in generating time-varying membrane potential in the presence of electric field. When a constant electric field is applied to the cell, distinct geometric deformation is induced, and the cell triggers a transition from prolate to spherical and then to oblate ellipsoid shape. It is found that the critical frequency in the applied electric field for triggering the distinct transition from prolate to oblate ellipsoid shape obtains smaller value when larger dielectric constant of the cell membrane and intracellular medium, and smaller conductivity for the intracellular medium are used. Furthermore, the effect of cell deformation is estimated by analyzing the capacitance per unit area, the density of field energy, and the change of ion concentration on one side of cell membrane. The intensity of external applied electric field is further increased to detect the change of ion concentration. And the biophysical effect in the cell is discussed. So the deformation effect of cells in electric field should be considered when regulating and preventing harm to normal neural activities occurs in a nervous system.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3