Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111) substrate

Author:

Biao 表 Yi 奕,Lu 路 Hong-Liang 红亮,Peng 彭 Hao 浩,Song 宋 Zhi-Peng 志朋,Guo 郭 Hui 辉,Lin 林 Xiao 晓

Abstract

Intercalation of insulating materials between epitaxial graphene and the metal substrates is highly demanded to restore the intrinsic properties of graphene, and thus essential for the graphene-based devices. Here we demonstrate a successful solution for the intercalation of hafnium oxide into the interface between full-layer graphene and Ir(111) substrate. We first intercalate hafnium atoms beneath the epitaxial graphene. The intercalation of the hafnium atoms leads to the variation of the graphene moiré superstructure periodicity, which is characterized by low-energy electron diffraction (LEED) and low-temperature scanning tunneling microscopy (LT-STM). Subsequently, we introduce oxygen into the interface, resulting in oxidization of the intercalated hafnium. STM and Raman’s characterizations reveal that the intercalated hafnium oxide layer could effectively decouple the graphene from the metallic substrate, while the graphene maintains its high quality. Our work suggests a high-k dielectric layer has been successfully intercalated between high-quality epitaxial graphene and metal substrate, providing a platform for applications of large-scale, high-quality graphene for electronic devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3