Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films*

Author:

Wang Yao,Yu Sheng-Wang,Xue Yan-Peng,Hei Hong-Jun,Wu Yan-Xia,Shen Yan-Yan

Abstract

Nano-diamond particles are co-deposited on Ti substrates with metal (Ti/Ni) nanoparticles (NPs) by the electrophoretic deposition (EPD) method combined with a furnace annealing at 800 °C under N2 atmosphere. Modifications of structural and electron field emission (EFE) properties of the metal-doped films are investigated with different metal NPs concentrations. Our results show that the surface characteristics and EFE performances of the samples are first enhanced and then reduced with metal NPs concentration increasing. Both the Ti-doped and Ni-doped nano-diamond composite films exhibit optimal EFE and microstructural performances when the doping quantity is 5 mg. Remarkably enhanced EFE properties with a low turn-on field of 1.38 V/μm and a high current density of 1.32 mA/cm2 at an applied field of 2.94 V/μm are achieved for Ni-doped nano-diamond films, and are superior to those for Ti-doped ones. The enhancement of the EFE properties for the Ti-doped films results from the formation of the TiC-network after annealing. However, the doping of electron-rich Ni NPs and formation of high conductive graphitic phase are considered to be the factor, which results in marvelous EFE properties for these Ni-doped nano-diamond films.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3