Author:
Liu Weixin,Wang Tao,Li Weidong
Abstract
We study theoretically the nonadiabatic geometric phase of a doubly driven two-level system with an additional relative phase between the two driving modes introduced in. It is shown that the time evolution of the system strongly depends on this relative phase. The condition for the system returning to its initial state after a single period is given by the means of the Landau–Zener–Stückelberg–Majorana destructive interference. The nonadiabatic geometric phase accompanying a cyclic evolution is shown to be related to the Stokes phase as well as this relative phase. By controlling the relative phase, the geometric phase can characterize two distinct phases in the adiabatic limit.
Subject
General Physics and Astronomy