Author:
Yu Fei,Zhang Zinan,Shen Hui,Huang Yuanyuan,Cai Shuo,Du Sichun
Abstract
A memristive Hopfield neural network (MHNN) with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network (HNN) with a special activation gradient. The MHNN is simulated and dynamically analyzed, and implemented on FPGA. Then, a new pseudo-random number generator (PRNG) based on MHNN is proposed. The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator, which effectively ensures the randomness of PRNG. The experiments in this paper comply with the IEEE 754-1985 high precision 32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7Z020CLG400-2 FPGA chip and the Verilog-HDL hardware programming language. The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis, proving its randomness and high performance. Finally, an image encryption system based on PRNG is proposed and implemented on FPGA, which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things (IoT).
Subject
General Physics and Astronomy
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献