Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves

Author:

Mitri F G

Abstract

The purpose of this study is to develop an analytical formalism and derive series expansions for the time-averaged force and torque exerted on a compound coated compressible liquid-like cylinder, insonified by acoustic standing waves having an arbitrary angle of incidence in the polar (transverse) plane. The host medium of wave propagation and the eccentric liquid-like cylinder are non-viscous. Numerical computations illustrate the theoretical analysis with particular emphases on the eccentricity of the cylinder, the angle of incidence and the dimensionless size parameters of the inner and coating cylindrical fluid materials. The method to derive the acoustical scattering, and radiation force and torque components conjointly uses modal matching with the addition theorem, which adequately account for the multiple wave interaction effects between the layer and core fluid materials. The results demonstrate that longitudinal and lateral radiation force components arise. Moreover, an axial radiation torque component is quantified and computed for the non-absorptive compound cylinder, arising from geometrical asymmetry considerations as the eccentricity increases. The computational results reveal the emergence of neutral, positive, and negative radiation force and torque depending on the size parameter of the cylinder, the eccentricity, and the angle of incidence of the insonifying field. Moreover, based on the law of energy conservation applied to scattering, numerical verification is accomplished by computing the extinction/scattering energy efficiency. The results may find some related applications in fluid dynamics, particle trapping, mixing and manipulation using acoustical standing waves.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3