Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation*

Author:

Hou Peng-Wei,Li Yu-Hao,Li Zhong-Zhu,Wang Li-Fang,Gao Xingyu,Zhou Hong-Bo,Song Haifeng,Lu Guang-Hong

Abstract

Understanding the evolution of irradiation-induced defects is of critical importance for the performance estimation of nuclear materials under irradiation. Hereby, we systematically investigate the influence of He on the evolution of Frenkel pairs and collision cascades in tungsten (W) via using the object kinetic Monte Carlo (OKMC) method. Our findings suggest that the presence of He has significant effect on the evolution of irradiation-induced defects. On the one hand, the presence of He can facilitate the recombination of vacancies and self-interstitial atoms (SIAs) in W. This can be attributed to the formation of immobile He-SIA complexes, which increases the annihilation probability of vacancies and SIAs. On the other hand, due to the high stability and low mobility of He-vacancy complexes, the growth of large vacancy clusters in W is kinetically suppressed by He addition. Specially, in comparison with the injection of collision cascades and He in sequential way at 1223 K, the average sizes of surviving vacancy clusters in W via simultaneous way are smaller, which is in good agreement with previous experimental observations. These results advocate that the impurity with low concentration has significant effect on the evolution of irradiation-induced defects in materials, and contributes to our understanding of W performance under irradiation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3