Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film

Author:

Fan Yang-Yang,Wang Jing,Hu Feng-Xia,Li Bao-He,Geng Ai-Cong,Yin Zhuo,Zhang Cheng,Zhou Hou-Bo,Wang Meng-Qin,Yu Zi-Bing,Shen Bao-Gen

Abstract

The origin of ferromagnetism in epitaxial strained LaCoO3−x films has long been controversial. Here, we investigated the magnetic behavior of a series of oxygen vacancy-ordered LaCoO3−x films on different substrates. Obvious ferromagnetism was observed in perovskite LaCoO3/LSAT (LSAT = (LaAlO3)0.3(SrAlTaO6)0.7) and LaCoO3/SrTiO3 films, while LaCoO3/LaAlO3 films showed weak ferromagnetic behavior. Meanwhile, LaCoO2.67 films exhibited antiferromagnetic behavior. An unexpected low-temperature ferromagnetic phenomenon with a Curie temperature of ∼ 83 K and a saturation magnetization of ∼ 1.2 μ B/Co was discovered in 15 nm thick LaCoO2.5/LSAT thin films, which is probably related to the change in the interface CoO6 octahedron rotation pattern. Meanwhile, the observed ferromagnetism gradually disappeared as the thickness of the film increased, indicating a relaxation of tensile strain. Analysis suggests that the rotation and rhombohedral distortion of the CoO6 octahedron weakened the crystal field splitting and promoted the generation of the ordered high-spin state of Co2+. Thus the super-exchange effect between Co2+ (high spin state), Co2+ (low spin state) and Co2+(high spin state) produced a low-temperature ferromagnetic behavior. However, compressive-strained LaCoO2.5 film on a LaAlO3 substrate showed normal anti-ferromagnetic behavior. These results demonstrate that both oxygen vacancies and tensile strain are correlated with the emergent magnetic properties in epitaxial LaCoO3−x films and provide a new perspective to regulate the magnetic properties of transition oxide thin films.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3