Alternative constitutive relation for momentum transport of extended Navier–Stokes equations*

Author:

Han Guo-Feng,Liu Xiao-Li,Huang Jin,Nawnit Kumar,Sun Liang

Abstract

The classical Navier–Stokes equation (NSE) is the fundamental partial differential equation that describes the flow of fluids, but in certain cases, like high local density and temperature gradient, it is inconsistent with the experimental results. Some extended Navier–Stokes equations with diffusion terms taken into consideration have been proposed. However, a consensus conclusion on the specific expression of the additional diffusion term has not been reached in the academic circle. The models adopt the form of the generalized Newtonian constitutive relation by substituting the convection velocity with a new term, or by using some analogy. In this study, a new constitutive relation for momentum transport and a momentum balance equation are obtained based on the molecular kinetic theory. The new constitutive relation preserves the symmetry of the deviation stress, and the momentum balance equation satisfies Galilean invariance. The results show that for Poiseuille flow in a circular micro-tube, self-diffusion in micro-flow needs considering even if the local density gradient is very low.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3