Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments

Author:

Li Guoqiang,Liu Yanping,Yao Jingru,Song Kena,Wang Gao,Zhou Lianjie,Chen Guo,Liu Liyu

Abstract

The in vivo tumor microenvironment is a complex niche that includes heterogeneous physical structures, unique biochemical gradients and multiple cell interactions. Its high-fidelity in vitro reconstruction is of fundamental importance to improve current understandings of cell behavior, efficacy predictions and drug safety. In this study, we have developed a high-throughput biochip with hundreds of composite extracellular matrix (ECM) microchambers to co-culture invasive breast cancer cells (MDA-MB-231-RFP) and normal breast epithelial cells (MCF-10A-GFP). The composite ECM is composed of type I collagen and Matrigel which provides a heterogeneous microenvironment that is similar to that of in vivo cell growth. Additionally, the growth factors and drug gradients that involve human epidermal growth factor (EGF), discoidin domain receptor 1 (DDR1) inhibitor 7rh and matrix metalloproteinase inhibitor batimastat allow for the mimicking of the complex in vivo biochemical microenvironment to investigate their effect on the spatial-temporal dynamics of cell growth. Our results demonstrate that the MDA-MB-231-RFP cells and MCF-10A-GFP cells exhibit different spatial proliferation behaviors under the combination of growth factors and drugs. Basing on the experimental data, we have also developed a cellular automata (CA) model that incorporated drug diffusion to describe the experimental phenomenon, as well as employed Shannon entropy (SE) to explore the effect of the drug diffusion coefficient on the spatial-temporal dynamics of cell growth. The results indicate that the uniform cell growth is related to the drug diffusion coefficient, which reveals that the pore size of the ECM plays a key role in the formation of complex biochemical gradients. Therefore, our integrated, biomimetic and high-throughput co-culture platforms, as well as the computational model can be used as an effective tool for investigating cancer pathogenesis and drug development.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3