Author:
Chen Lei,Li Pan,Liu He-Shan,Yu Jin,Ke Chang-Jun,Luo Zi-Ren
Abstract
We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schrödinger equation (GNLSE): one is the conservation quantity error adaptive step-control method (RK4IP-CQE), and the other is the local error adaptive step-control method (RK4IP-LEM). The methods are developed in the vector form of fourth-order Runge–Kutta iterative scheme in the interaction picture by converting a vector equation in frequency domain. By simulating the supercontinuum generated from the high birefringence photonic crystal fiber, the calculation accuracies and the efficiencies of the two adaptive step-size methods are discussed. The simulation results show that the two methods have the same global average error, while RK4IP-LEM spends more time than RK4IP-CQE. The decrease of huge calculation time is due to the differences in the convergences of the relative photon number error and the approximated local error between these two adaptive step-size algorithms.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献