Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges

Author:

Cheng Yi-Han,Zhu Yu-Cheng,Li Xin-Zheng,Fang Wei

Abstract

Proton transfer (PT) is a process of fundamental importance in hydrogen (H)-bonded systems. At cryogenic or moderate temperatures, pronounced quantum tunneling may happen due to the light mass of H. Single PT processes have been extensively studied. However, for PT involving multiple protons, our understanding remains in its infancy stage due to the complicated interplay between the high-dimensional nature of the process and the quantum nature of tunneling. Cyclic H-bonded systems are typical examples of this, where PT can happen separately via a “stepwise” mechanism or collectively via a “concerted” mechanism. In the first scenario, some protons hop first, typically resulting in metastable intermediate states (ISs) and the reaction pathway passes through multiple transition states. Whilst in the concerted mechanism, all protons move simultaneously, resulting in only one barrier along the path. Here, we review previous experimental and theoretical studies probing quantum tunneling in several representative systems for cyclic PT, with more focus on recent theoretical findings with path-integral based methods. For gas-phase porphyrin and porphycene, as well as porphycene on a metal surface, theoretical predictions are consistent with experimental observations, and enhance our understanding of the processes. Yet, discrepancies in the PT kinetic isotope effects between experiment and theory appear in two systems, most noticeably in water tetramer adsorbed on NaCl (001) surface, and also hinted in porphycene adsorbed on Ag (110) surface. In ice I h, controversy surrounding concerted PT remains even between experiments. Despite of the recent progress in both theoretical methods and experimental techniques, multiple PT processes in cyclic H-bonded systems remain to be mysterious.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3