Author:
Sebastian Riya,Swapna M S,Raj Vimal,Sankararaman S
Abstract
The paper explores the evolution of thermal behavior of the material by studying the variations in thermal diffusivity using the single beam thermal lens (TL) technique. For this purpose, the decomposition of Cu(OH)2 into CuO is studied in a time range up to 120 h, by subjecting the sample to morphological, structural, and spectroscopic characterizations. The time evolution of thermal diffusivity can be divided into three regions for demonstrating the dynamics of the reaction. When the reaction is complete, the thermal diffusivity is also found to be saturated. In addition to the morphological modifications, from rods to flakes, the variations in the amount of hydroxyl group are attributed to be responsible for the enhancement of base fluid’s thermal diffusivity by 165%. Thus the study unveils the role of hydroxyl groups in the thermal behavior of CuO.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献