A fast-response self-powered UV–Vis–NIR broadband photodetector based on a AgIn5Se8/t-Se heterojunction

Author:

Li 李 Kang 康,Xu 许 Lei 磊,Lu 陆 Qidong 启东,Hu 胡 Peng 鹏

Abstract

A type II p–n heterojunction could improve the photodetection performance of a photodetector due to the excellent ability of carrier separation. N-type AgIn5Se8 (AIS) exhibits a large optical absorption coefficient, high optical conductivity and a suitable bandgap, and shows potential application in broadband photodetection. Even though our previous study on AgIn5Se8/FePSe3 obtained a good response speed, it still gave low responsivity due to the poor quality of the p-type FePSe3 thin film. Se, with a direct bandgap (around 1.7 eV), p-type conductivity, high electron mobility and high carrier density, is likely to form a low-dimensional structure, which leads to an increase in the effective contact area of the heterojunction and further improves the photodetector performance. In this work, continuous and dense t-Se thin film was prepared by electrochemical deposition. The self-powered AgIn5Se8/t-Se heterojunction photodetector exhibited a broadband detection range from 365 nm to 1200 nm. The responsivity and detectivity of the heterojunction photodetector were 32 μA/W and 1.8 × 109 Jones, respectively, which are around 9 and 4 times higher than those of the AgIn5Se8/FePSe3 heterojunction photodetector. The main reason for this is the good quality of the t-Se thin film and the formation of the low-dimensional t-Se nanoribbons, which optimized the transport pathway of carriers. The results indicate that the AgIn5Se8/t-Se heterojunction is an excellent candidate for broadband and self-powered photoelectronic devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3