Gravity-capillary waves modulated by linear shear flow in arbitrary water depth*

Author:

Li Shaofeng,Song Jinbao,Cao Anzhou

Abstract

Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrödinger equation (NLSE) describing the evolution dynamics of gravity-capillary wavetrains in arbitrary constant depth. The gravity-capillary waves (GCWs) are influenced by a linear shear flow (LSF) which consists of a uniform flow and a shear flow with constant vorticity. The modulational instability (MI) of GCWs with the LSF is analyzed using the NLSE. The MI is effectively modified by the LSF. In infinite depth, there are four asymptotes which are the boundaries between MI and modulational stability (MS) in the instability diagram. In addition, the dimensionless free surface elevation as a function of time for different dimensionless water depth, surface tension, uniform flow and vorticity is exhibited. It is found that the decay of free surface elevation and the steepness of free surface amplitude change over time, which are greatly affected by the water depth, surface tension, uniform flow and vorticity.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3