Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets

Author:

Bi Zhaoxia,Gustafsson Anders,Samuelson Lars

Abstract

Miniaturization of light-emitting diodes (LEDs) with sizes down to a few micrometers has become a hot topic in both academia and industry due to their attractive applications on self-emissive displays for high-definition televisions, augmented/mixed realities and head-up displays, and also on optogenetics, high-speed light communication, etc. The conventional top-down technology uses dry etching to define the LED size, leading to damage to the LED side walls. Since sizes of microLEDs approach the carrier diffusion length, the damaged side walls play an important role, reducing microLED performance significantly from that of large area LEDs. In this paper, we review our efforts on realization of microLEDs by direct bottom-up growth, based on selective area metal–organic vapor phase epitaxy. The individual LEDs based on either GaN nanowires or InGaN platelets are smaller than 1 μm in our approach. Such nano-LEDs can be used as building blocks in arrays to assemble microLEDs with different sizes, avoiding the side wall damage by dry etching encountered for the top-down approach. The technology of InGaN platelets is especially interesting since InGaN quantum wells emitting red, green and blue light can be grown on such platelets with a low-level of strain by changing the indium content in the InGaN platelets. This technology is therefore very attractive for highly efficient microLEDs of three primary colors for displays.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3