Nonlinear modes coupling of trapped spin–orbit coupled spin-1 Bose–Einstein condensates

Author:

Wang Jie,Liang Jun-Cheng,Yu Zi-Fa,Zhang An-Qing,Zhang Ai-Xia,Xue Ju-Kui

Abstract

We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin–orbit coupled spin-1 Bose–Einstein condensates trapped in harmonic potential. The ground state of the system is determined by minimizing the Lagrange density, and the coupled equations of motions for the center-of-mass coordinate of the condensate and its width are derived. Then, two low energy excitation modes in breathing dynamics and dipole dynamics are obtained analytically, and the mechanism of exciting the anharmonic collective dynamics is revealed explicitly. The coupling among spin–orbit coupling, Raman coupling and spin-dependent interaction results in multiple external collective modes, which leads to the anharmonic collective dynamics. The cooperative effect of spin momentum locking and spin-dependent interaction results in coupling of dipolar and breathing dynamics, which strongly depends on spin-dependent interaction and behaves distinct characters in different phases. Interestingly, in the absence of spin-dependent interaction, the breathing dynamics is decoupled from spin dynamics and the breathing dynamics is harmonic. Our results provide theoretical evidence for deep understanding of the ground sate phase transition and the nonlinear collective dynamics of the system.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3