Author:
Han 韩 Jiaxin 嘉鑫,Guan 管 Zhong 仲,Wang 汪 Beiyu 倍羽,Jin 金 Cheng 成
Abstract
We calibrate the macroscopic vortex high-order harmonic generation (HHG) obtained by the quantitative rescattering (QRS) model to compute single-atom induced dipoles against that by solving the time-dependent Schrödinger equation (TDSE). We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition, and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good. We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent. This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献