Author:
Huang Yu-Jiao,Yuan Xiao-Yan,Yang Xu-Hua,Long Hai-Xia,Xiao Jie
Abstract
This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen–Grossberg neural networks (FOCGNNs) with time delays. Based on Brouwer’s fixed point theorem, sufficient conditions are established to ensure the existence of
∏
i
=
1
n
(
2
K
i
+
1
)
equilibrium points for FOCGNNs. Through the use of Hardy inequality, fractional Halanay inequality, and Lyapunov theory, some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of
∏
i
=
1
n
(
K
i
+
1
)
equilibrium points for FOCGNNs. The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases. The activation functions are nonlinear and nonmonotonic. There could be many corner points in this general class of activation functions. The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points. Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories. Finally, two numerical examples are provided to illustrate the effectiveness of the obtained results.
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献