Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications

Author:

Liu Jia-Li,Fu Guo-Dong,Wu Ping,Liu Shang,Yang Jin-Guang,Zhang Shi-Ping,Wang Li,Xu Min,Huai Xiu-Lan

Abstract

UiO-66 is a potential material for adsorption heat transformation (AHT) with high specific surface area, and excellent thermal and chemical stability. However, the low water adsorption capacity of UiO-66 in the low relative pressure range (0 < P/P 0 < 0.3) limits its application in AHT. We prepare the UiO-66 modified by MgCl2 through using the solvothermal method and impregnation method, and study their water vapor adsorption performances and heat storage capacities. Attributed to the extremely high saturated water uptake and excellent hydrophilicity of MgCl2, the water adsorption performance of UiO-66 is improved, although the introduction of MgCl2 reduces its specific surface area and pore volume. The water adsorption capacity at P/P 0 = 0.3 and the saturated water adsorption capacity of the UiO-66 (with MgCl2 content of 0.57 wt%) modified by the solvothermal method are 0.27 g/g and 0.57 g/g at 298 K, respectively, which are 68.8% and 32.6% higher than the counterparts of pure UiO-66, respectively. Comparing with pure UiO-66, the water adsorption capacity of the UiO-66 (with MgCl2 content of 1.02 wt%) modified by the impregnation method is increased by 56.3% and 14.0% at the same pressure, respectively. During 20 water adsorption/desorption cycles, the above two materials show high heat storage densities (∼ 1293 J/g and 1378 J/g). Therein, the UiO-66 modified by the solvothermal method exhibits the excellent cyclic stability. These results suggest that the introduction of an appropriate amount of MgCl2 makes UiO-66 more suitable for AHT applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3