Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium

Author:

Yan 晏 Yu-Ping 玉平,Zhang 张 Liu-Ting 柳亭,zhang 张 Li-Pan 丽攀,Lu 芦 Gang 刚,Tu 涂 Zhi-Xin 志新

Abstract

Abstract Atomic simulations are executed to investigate the creep responses of nano-polycrystalline (NC) niobium established by using the Voronoi algorithm. The effects of varying temperature, applied stress, and grain size (GS) on creep properties and mechanisms are investigated. Notably, the occurrence of tertiary creep is exclusively observed under conditions where the applied stress exceeds 4.5 GPa and the temperature is higher than 1100 K. This phenomenon can be attributed to the significant acceleration of grain boundary and lattice diffusion, driven by the elevated temperature and stress levels. It is found that the strain rate increases with both temperature and stress increasing. However, an interesting trend is observed in which the strain rate decreases as the grain size increases. The stress and temperature are crucial parameters governing the creep behavior. As these factors intensify, the creep mechanism undergoes a sequential transformation: initially from lattice diffusion under low stress and temperature conditions to a mixed mode combining grain boundaries (GBs) and lattice diffusion at moderate stress and mid temperature levels, and ultimately leading to the failure of power-law controlled creep behavior, inclusive of grain boundary recrystallization under high stress and temperature conditions. This comprehensive analysis provides in more detail an understanding of the intricate creep behavior of nano-polycrystalline niobium and its dependence on various physical parameters.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3