Author:
Wang Tao,Liu Tiegang,Wang Zheng
Abstract
To date, there are very few studies on the second Hopf bifurcation in a driven square cavity, although there are intensive investigations focused on the first Hopf bifurcation in literature, due to the difficulties of theoretical analyses and numerical simulations. In this paper, we study the characteristics of the second Hopf bifurcation in a driven square cavity by applying a consistent fourth-order compact finite difference scheme recently developed by us. We numerically identify the critical Reynolds number of the second Hopf bifurcation located in the interval of (11093.75,11094.3604) by bisection. In addition, we find that there are two dominant frequencies in its spectral diagram when the flow is in the status of the second Hopf bifurcation, while only one dominant frequency is identified if the flow is in the first Hopf bifurcation via the Fourier analysis. More interestingly, the flow phase portrait of velocity components is found to make transition from a regular elliptical closed form for the first Hopf bifurcation to a non-elliptical closed form with self-intersection for the second Hopf bifurcation. Such characteristics disclose flow in a quasi-periodic state when the second Hopf bifurcation occurs.
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献