Author:
Meng Hongjuan,Zhou Yushan,Ren Xueping,Wan Xiaohuan,Zhang Juan,Wang Jing,Fan Xiaobei,Wang Wenyuan,Shi Yuren
Abstract
We investigate the existence and dynamical stability of multipole gap solitons in Bose–Einstein condensate loaded in a deformed honeycomb optical lattice. Honeycomb lattices possess a unique band structure, the first and second bands intersect at a set of so-called Dirac points. Deformation can result in the merging and disappearance of the Dirac points, and support the gap solitons. We find that the two-dimensional honeycomb optical lattices admit multipole gap solitons. These multipoles can have their bright solitary structures being in-phase or out-of-phase. We also investigate the linear stabilities and nonlinear stabilities of these gap solitons. These results have applications of the localized structures in nonlinear optics, and may helpful for exploiting topological properties of a deformed lattice.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献