Dynamics and control strategies of infectious disease under different scenarios on hierarchical geographical networks*

Author:

Ma Xun,Cui Ya-Peng,Yan Xiao-Li,Ni Shun-Jiang,Shen Shi-Fei

Abstract

Human settlements are embedded in traffic networks with hierarchical structures. In order to understand the spreading mechanism of infectious diseases and deploy control measures, the susceptible-infected-removed spreading process is studied with agents moving globally on the hierarchical geographic network, taking into account agents’ preference for node layers and memory of initial nodes. We investigate the spreading behavior in the case of global infection under different scenarios, including different directions of human flow, different locations of infection source, and different moving behaviors of agents between layers. Based on the above-mentioned analysis, we propose screening strategies based on layer rank and moving distance, and compare their effects on delaying epidemic spreading. We find that in the case of global infection, infection spreads faster in high layers than in low layers, and early infection in high layers and moving to high layers both accelerate epidemic spreading. Travels of high-layer and low-layer residents have different effects on accelerating epidemic spreading, and moving between high and low layers increases the peak value of new infected cases more than moving in the same layer or between adjacent layers. Infection in intermediate nodes enhances the effects of moving of low-layer residents more than the moving of high-layer residents on accelerating epidemic spreading. For screening measures, improving the success rate is more effective on delaying epidemic spreading than expanding the screening range. With the same number of moves screened, screening moves into or out of high-layer nodes combined with screening moves between subnetworks has better results than only screening moves into or out of high-layer nodes, and screening long-distance moves has the worst results when the screening range is small, but it achieves the best results in reducing the peak value of new infected cases when the screening range is large enough. This study probes into the spreading process and control measures under different scenarios on the hierarchical geographical network, and is of great significance for epidemic control in the real world.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3