Author:
Haddadifam Taha,Azim Karami Mohammad
Abstract
This paper proposes two optimal designs of single photon avalanche diodes (SPADs) minimizing dark count rate (DCR). The first structure is introduced as p+/pwell/nwell, in which a specific shallow pwell layer is added between p+ and nwell layers to decrease the electric field below a certain threshold. The simulation results show on average 19.7% and 8.5% reduction of p+/nwell structure’s DCR comparing with similar previous structures in different operational excess bias and temperatures respectively. Moreover, a new structure is introduced as
n
+
/nwell/pwell, in which a specific shallow nwell layer is added between n+ and pwell layers to lower the electric field below a certain threshold. The simulation results show on average 29.2% and 5.5% decrement of
p
+
/nwell structure’s DCR comparing with similar previous structures in different operational excess bias and temperatures respectively. It is shown that in higher excess biases (about 6 volts), the n+/nwell/pwell structure is proper to be integrated as digital silicon photomultiplier (dSiPM) due to low DCR. On the other hand, the p+/pwell/nwell structure is appropriate to be utilized in dSiPM in high temperatures (above 50 °C) due to lower DCR value.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献