Author:
Ji Ya-Bing,Wei Bin,Guo Heng-Jiao,Liu Qing,Yang Tao,Hou Shun-Yong,Yin Jian-Ping
Abstract
Preparation and control of cold molecules are advancing rapidly, motivated by many exciting applications ranging from tests of fundamental physics to quantum information processing. Here, we propose a trapping scheme to create high-density cold molecular samples by using a combination of electric and magnetic fields. In our theoretical analysis and numerical calculations, a typical alkaline-earth monofluoride, MgF, is used to test the feasibility of our proposal. A cold MgF molecular beam is first produced via an electrostatic Stark decelerator and then loaded into the proposed electromagnetic trap, which is composed of an anti-Helmholtz coil, an octupole, and two disk electrodes. Following that, a huge magnetic force is applied to the molecular sample at an appropriate time, which enables further compressing of the spatial distribution of the cold sample. Molecular samples with both higher number density and smaller volume are quite suitable for the laser confinement and other molecular experiments such as cold collisions in the next step.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献