Author:
Chen 陈 Miao-Miao 苗苗,Li 李 Sheng-Shi 胜世,Ji 纪 Wei-Xiao 维霄,Zhang 张 Chang-Wen 昌文
Abstract
Two-dimensional (2D) nanomaterials with bipolar magnetism show great promise in spintronic applications. Manipulating carriers’ spin-polarized orientation in bipolar magnetic semiconductor (BMS) requires a gate voltage, but that is volatile. Recently, a new method has been proposed to solve the problem of volatility by introducing a ferroelectric gate with proper band alignment. In this paper, we predict that the PdX
2 (X = F, Cl, Br, I) monolayers are 2D ferromagnetic BMS with dynamic stability, thermal stability, and mechanical stability by first-principles calculations. The critical temperatures are higher than the boiling point of liquid nitrogen and the BMS characteristics are robust against external strains and electric fields for PdCl2 and PdBr2. Then, we manipulate the spin-polarization of PdCl2 and PdBr2 by introducing a ferroelectric gate to enable magnetic half-metal/semiconductor switching and spin-up/down polarization switching control. Two kinds of spin devices (multiferroic memory and spin filter) have been proposed to realize the spin-polarized directions of electrons. These results demonstrate that PdCl2 and PdBr2 with BMS characters can be widely used as a general material structure for spintronic devices.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献