Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex

Author:

Cui Xue-Yan,Yan Yi-Jing,Wei Jian-Hua

Abstract

The experimental observation of long-lived quantum coherence in the excitation energy transfer (EET) process of the several photosynthetic light-harvesting complexes at low and room temperatures has aroused hot debate. It challenges the common perception in the field of complicated pigment molecular systems and evokes considerable theoretical efforts to seek reasonable explanations. In this work, we investigate the coherent exciton dynamics of the phycoerythrin 545 (PE545) complex. We use the dissipation equation of motion to theoretically investigate the effect of the local pigment vibrations on the population transfer process. The result indicates that the realistic local pigment vibrations do assist the energy transmission. We demonstrate the coherence between different pigment molecules in the PE545 system is an essential ingredient in the EET process among various sites. The coherence makes the excitation energy delocalized, which leads to the redistribution of the excitation among all the chromophores in the steady state. Furthermore, we investigate the effects of the complex high-frequency spectral density function on the exciton dynamics and find that the high-frequency Brownian oscillator model contributes most to the exciton dynamic process. The discussions on the local pigment vibrations of the Brownian oscillator model suggest that the local heterogeneous protein environments and the effects of active vibration modes play a significant role in coherent energy transport.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3