Visibility graph approach to extreme event series

Author:

Zhang 张 Jing 晶,Chen 陈 Xiaolu 晓露,Wang 王 Haiying 海英,Gu 顾 Changgui 长贵,Yang 杨 Huijie 会杰

Abstract

An extreme event may lead to serious disaster to a complex system. In an extreme event series there exist generally non-trivial patterns covering different time scales. Investigations on extreme events are currently based upon statistics, where the patterns are merged into averages. In this paper from extreme event series we constructed extreme value series and extreme interval series. And the visibility graph is then adopted to display the patterns formed by the increases/decreases of extreme value or interval faster/slower than the linear ones. For the fractional Brownian motions, the properties for the constructed networks are the persistence, threshold, and event-type-independent, e.g., the degree distributions decay exponentially with almost identical speeds, the nodes cluster into modular structures with large and similar modularity degrees, and each specific network has a perfect hierarchical structure. For the volatilities of four stock markets (NSDQ, SZI, FTSE100, and HSI), the properties for the former three’s networks are threshold- and market-independent. Comparing with the factional Brownian motions, their degree distributions decay exponentially but with slower speeds, their modularity behaviors are significant but with smaller modularity degrees. The fourth market behaves similar qualitatively but different quantitatively with the three markets. Interestingly, all the transition frequency networks share an identical backbone composed of nine edges and the linked graphlets. The universal behaviors give us a framework to describe extreme events from the viewpoint of network.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3