Author:
Li Di-Di,Chen Jing-Jing,Su Xu-Jun,Huang Jun,Niu Mu-Tong,Xu Jin-Tong,Xu Ke
Abstract
AlN films grown on sputter-deposited and annealed AlN buffer layer by high temperature hydride vapor phase epitaxy (HVPE) have been fabricated and structurally characterized. The crystalline quality and surface morphology of as-grown AlN films with various V/III ratios were studied and compared. The XRD results showed that the crystalline quality of the AlN film could be optimized when the growth V/III ratio was 150. At the same time, the full width at half-maximum (FWHM) values of (0002)- and (
10
1
¯
2
)-plane were 64 arcsec and 648 arcsec, respectively. As revealed by AFM, the AlN films grown with higher V/III ratios of 150 and 300 exhibited apparent hillock-like surface structure due to the low density of screw threading dislocation (TD). The defects microstructure and strain field around the HVPE-AlN/sputtered-AlN/sapphire interfaces have been investigated by transmission electron microscopy (TEM) technique combined with geometric phase analysis (GPA). It was found that the screw TDs within AlN films intend to turn into loops or half-loops after originating from the AlN/sapphire interface, while the edge ones would bend first and then reacted with others within a region of 400 nm above the interface. Consequently, part of the edge TDs propagated to the surface vertically. The GPA analysis indicated that the voids extending from sapphire to HVPE-AlN layer were beneficial to relax the interfacial strain of the best quality AlN film grown with a V/III ratio of 150.
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献