Author:
Lin Long,Guo Yi-Peng,He Chao-Zheng,Tao Hua-Long,Huang Jing-Tao,Yu Wei-Yang,Chen Rui-Xin,Lou Meng-Si,Yan Long-Bin
Abstract
The electronic structures and magnetic properties of diverse transition metal (TM = Fe, Co, and Ni) and nitrogen (N) co-doped monolayer MoS2 are investigated by using density functional theory. The results show that the intrinsic MoS2 does not have magnetism initially, but doped with TM (TM = Fe, Co, and Ni) the MoS2 possesses an obvious magnetism distinctly. The magnetic moment mainly comes from unpaired Mo:4d orbitals and the d orbitals of the dopants, as well as the S:3p states. However, the doping system exhibits certain half-metallic properties, so we select N atoms in the V family as a dopant to adjust its half-metal characteristics. The results show that the (Fe, N) co-doped MoS2 can be a satisfactory material for applications in spintronic devices. On this basis, the most stable geometry of the (2Fe–N) co-doped MoS2 system is determined by considering the different configurations of the positions of the two Fe atoms. It is found that the ferromagnetic mechanism of the (2Fe–N) co-doped MoS2 system is caused by the bond spin polarization mechanism of the Fe–Mo–Fe coupling chain. Our results verify that the (Fe, N) co-doped single-layer MoS2 has the conditions required to become a dilute magnetic semiconductor.
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献